Volume 2, Issue 1 (3-2020)                   JAD 2020, 2(1): 127-140 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zamani-Faradonbe M, Keivany Y, Dorafshan S, Abbasi-Jeshvaghani M. Body shape variation of Garra rufa (Heckel) (Teleostei: Cyprinidae) using geometric and morphometric techniques. JAD 2020; 2 (1) :127-140
URL: http://jad.lu.ac.ir/article-1-61-en.html
1- Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan, 84156-83111, Iran , mazaher.zamani@na.iut.ac.ir; m.zamanif68@gmail.com
2- Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan, 84156-83111, Iran
3- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
Abstract:   (8940 Views)
Organisms can adapt to habitat conditions that ensure their survival. Habitat separation can lead to different populations of body shape during the phenotypic plasticity process. Both traditional and modern (geometric) morphology are being used in fish population studies. In this study, the body shape differences between Garra rufa (Heckel) populations captured in the Jarrahi River (from the Tigris Basin) were investigated using traditional and geometric morphometric methods. The samples were captured from the Rostam Abad, Aghajari and Behbahan tributaries and transferred to the laboratory. For the traditional morphometric analysis, 10 meristic characters and 19 morphometric characters were measured. Geometric morphological information was extracted using 13 landmark points on left side photographs of individual fish. According to the results of the traditional morphometric analysis, there were differences between the three populations in meristic (lateral line scales, predorsal scales, circamucaudal scales) and morphometric (14 of 19 characters) traits. In the geometric morphometric analysis, the major part of the shape variation is due to landmark points in the head region and the dorsal fin base, with the anal fin and caudal peduncle being the most conservative body regions. The populations had significant differences in body shape with populations from Aghajari and Behbahan tributaries being most similar and the Rostam Abad population was different from the two other populations.
Full-Text [PDF 3671 kb]   (3475 Downloads)    
Type of Study: Original Research Article |
Received: 2020/03/11 | Accepted: 2020/05/17 | Published: 2020/05/25

1. Abedi, M., Shiva, A. H., Mohammadi, H. and Malekpour, R. (2011). Reproductive biology and age determination of Garra rufa Heckel, 1843 (Actinopterygii: Cyprinidae) in central Iran. Turkish Journal of Zoology, 35 (3): 317-323. https://doi.org/10.3906/zoo-0810-11 [DOI]
2. Antonucci, F., Costa, C., Aguzzi, J. and Cataudella, S. (2009). Ecomorphology of morpho-functional relationships in the family of Sparidae: A quantitative statistic approach. Journal of Morphology, 270 (7): 843–855. https://doi.org/10.1002/jmor.10725 [DOI]
3. Bakhoum, S. A. (1994). Comparative study on length-weight relationship and condition factor of the genus Oreochromis in polluted and non-polluted parts of Lake Mariut, Egypt. Bulletin of the National Institute of Oceanography and Fisheries, 20 (1): 201-210.
4. Brinsmead, J. and Fox, M. G. (2002). Morphological variation between lake- and stream-dwelling rock bass and pumpkinseed populations. Journal of Fish Biology, 61 (6): 1619-1638. https://doi.org/10.1111/j.1095-8649.2002.tb02502.x [DOI]
5. Cicek, T., Kaya, A., Bilici, S. and Ünlu, E. (2016). Size and shape analysis of two close Cyprinidae species (Garra variabilis-Garra rufa) by geometric morphometric methods. Journal of Survey in Fisheries Sciences, 2 (2): 35-44.‏ https://doi.org/10.18331/SFS2016.2.2.3
6. Costa, C. and Cataudella, S. (2007). Relationship between shape and trophic ecology of selected species of Sparids of the Caprolace coastal lagoon (Central Tyrrhenian Sea). Environmental Biology of Fishes, 78: 115-123. https://doi.org/10.1007/s10641-006-9081-9 [DOI]
7. Esmaeili, H. R. and Ebrahimi, M. (2006). Length–weight relationships of some freshwater fishes of Iran. Journal of Applied Ichthyology, 22 (4): 328-329. https://doi.org/10.1111/j.1439-0426.2006.00653.x [DOI]
8. Esmaeili, H. R., Sayyadzadeh, G., Coad, B. W. and Eagderi, S. (2016). Review of the genus Garra Hamilton, 1822 in Iran with description of a new species: a morpho-molecular approach (Teleostei: Cyprinidae). Iranian Journal of Ichthyology, 3 (2): 82-121.
9. Esmaeili, H. R., Sayyadzadeh, G., Eagderi, S. and Abbasi, K. (2018). Checklist of freshwater fishes of Iran. FishTaxa, 3 (3): 1-95.
10. Facey, D. E. and Grossman, G. D. (1990). The metabolic cost of maintaining position for four North American stream fishes: effects of season and velocity. Physiological Zoology, 63 (4): 757-776. https://doi.org/10.1086/physzool.63.4.30158175 [DOI]
11. Fischer-Rousseau, L., Cloutier, R. and Zelditch, M. L. (2009). Morphological integration and developmental progress during fish ontogeny in two contrasting habitats. Evolution and Development, 11 (6): 740–753. https://doi.org/10.1111/j.1525-142X.2009.00381.x [DOI]
12. Fricke, R., Eschmeyer, W. N. and van der Laan, R. (2019). (Eds). Catalog of Fishes: Genera, Species. (http://researcharchive.calacademy.org/research /ichthyology/catalog/fishcatmain.asp). Electronic version accessed 24 December 2019.
13. Gamelin, F., Baquet, G., Berthoin, S., Thevenet, D., Nourry, C., Nottin, S. and Bosquet, L. (2009). Effect of high intensity intermittent training on heart rate variability in prepubescent children. European Journal of Applied Physiology, 105: 731-738. https://doi.org/10.1007/s00421-008-0955-8 [DOI]
14. Gerami, M. H., Abdollahi, D. and Patimar, R. (2013). Length-weight, length-length relationship and condition factor of Garra rufa in Cholvar River of Iran. World Journal of Fish and Marine Sciences, 5 (4): 358-361.
15. Ghalenoei, M., Pazooki, J., Abdoli, A., Hassanzadeh Kiabi, B. and Golzarian, K. (2010). Morphometric and meristic study of Garra rufa populations in Tigris and Persian Gulf basins. Iranian Scientific Fisheries Journal, 19 (3): 107-118. [in Persian]
16. Gorshkova, G., Gorshkov, S., Abu-Ras, A. and Golani, D. (2012). Karyotypes of Garra rufa and G. ghorensis (Pisces, Cyprinidae) inhabiting the inland water systems of the Jordan basin. Italian Journal of Zoology, 79 (1): 9-12. https://doi.org/10.1080/11250003.2011.600338 [DOI]
17. Grinang, J., Das, I. and Ng, P. K. L. (2019). Geometric morphometric analysis in female freshwater crabs of Sarawak (Borneo) permits addressing taxonomy-related problems. PeerJ, 7: e6205.‏ https://doi.org/10.7717/peerj.6205 [DOI]
18. Hamidan, N. and Britton, J. R. (2013). Length-weight relationships for three fish species (Capoeta damascina, Garra rufa and Nemacheilus insignis) native to the Mujib Basin, Jordan. Journal of Applied Ichthyology, 29 (2): 480-481. https://doi.org/10.1111/jai.12120 [DOI]
19. Hammer, Ø., Harper, D. A. T. and Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1): 1-9.
20. Hashemzadeh Segherloo, I., Tabatabaei, S. N., Mansouri, A., Abdoli, A., Ghalenoei, M. and Golzarianpour, K. (2015). Length-weight relationships of Garra rufa, in the Tigris and Persian Gulf basins of Iran. International Journal of Aquatic Biology, 3 (1): 25-27.
21. Heistinger, K., Heistinger, H., Lussy, H. and Nowotny, N. (2011). Analysis of potential microbiological risks in ichthyotherapy using kangal fish (Garra rufa). Egyptian Journal of Aquatic Biology and Fisheries, 15 (3): 100-105.
22. Keivany, Y. and Zamani-Faradonbe, M. (2017). Length-weight and length-length relationships for six fish species from Zohreh River, Iran. International Journal of Aquatic Biology, 4 (6): 387-390.‏
23. Keivany, Y., Nezamoleslami, A. and Dorafshan, S. (2015a). Morphological diversity of Garra rufa (Heckel, 1843) populations in Iran. Iranian Journal of Ichthyology, 2 (3): 148-154.
24. Keivany, Y., Nezamoleslami, A., Dorafshan, S. and Eagderi, S. (2015b). Length-weight and length-length relationships in populations of Garra rufa from different rivers and basins of Iran. International Journal of Aquatic Biology, 3 (6): 409-413.‏
25. Klingenberg, C. P. (2011). Morpho J: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11 (2): 353–357. http://dx.doi.org/10.1111/j.1755-0998.2010.02924.x [DOI]
26. Kottelat, M. and Freyhof, J. (2007). Handbook of European freshwater fishes. Kottelat, Cornol, Switzerland and Freyhof, Berlin, Germany. xiii + 646 pp.
27. Kuliev, Z. M. (1988). Morphometric and ecological characteristics of Caspian Vimba, Vimba vimba persa. Journal of Ichthyology, 28 (1): 29-37.
28. Langerhans, R. B., Layman, C. A., Langerhans, A. K. and DeWitt, T. J. (2003). Habitat-associated morphological divergence in two Neotropical fish species. Biological Journal of the Linnean Society, 80 (4): 689–698. https://doi.org/10.1111/j.1095-8312.2003.00266.x [DOI]
29. Majtán, J., Černy, J., Ofúkaná, A., Takáč, P. and Kozánek, M. (2012). Mortality of therapeutic fish Garra rufa caused by Aeromonas sobria. Asian Pacific Journal of Tropical Biomedicine, 2 (2): 85-87. https://doi.org/10.1016/S2221-1691(11)60197-4 [DOI]
30. Mousavi-Sabet, H., Saemi-Komsari, M., Doadrio, I. and Freyhof, J. (2019). Garra roseae, a new species from the Makran region in southern Iran (Teleostei: Cyprinidae). Zootaxa, 4671 (2): 223–239. http://dx.doi.org/10.11646/zootaxa.4671.2.3 [DOI]
31. Nacua, S. S., Dorado, E. L., Torres, A. J. V. and Demayo, C. G. (2010). Body shape variation between two populations of the white goby, Glossogobius giuris (Hamilton and Buchanan). Research Journal of Fisheries and Hydrobiology, 5 (1): 44-51.
32. Nicieza, A. G. (1995). Morphological variation between geographically disjunct populations of Atlantic salmon: the effects of ontogeny and habitat shift. Functional Ecology, 9 (3): 448-456. https://doi.org/10.2307/2390008 [DOI]
33. Nilsson, P. A. and Brönmark, C. (2000). Prey vulnerability to a gape‐size limited predator: behavioural and morphological impacts on northern pike piscivory. Oikos, 88 (3): 539-546. https://doi.org/10.1034/j.1600-0706.2000.880310.x [DOI]
34. Pinheiro, A., Teixeira, C. M., Rego, A. L., Marques, J. F. and Cabral, H. N. (2005). Genetic and morphological variation of Solea lascaris (Risso, 1810) along the Portuguese coast. Fisheries Research, 73 (1–2): 67-78. https://doi.org/10.1016/j.fishres.2005.01.004 [DOI]
35. Poulet, N., Berrebi, P., Crivelli, A. J., Lek, S. and Argillier, C. (2004). Genetic and morphometric variations in the pikeperch (Sander lucioperca L.) of a fragmented delta. Archiv für Hydrobiologie, 159 (4): 531-554. https://doi.org/10.1127/0003-9136/2004/0159-0531 [DOI]
36. Rohlf, F. J. (2010). TpsDig2–Thin Plate Spline Digitise. 2.16 ed. New York: State University of New York.
37. Rohlf, F. J. and Bookstein, F. L. (1990). Proceedings of the Michigan Morphometrics Workshop. Special Publication 2. The University of Michigan Museum of Zoology. 396 pp.
38. Schluter, D. and McPhail, J. D. (1992). Ecological Character Displacement and Speciation in Sticklebacks. The American Naturalist, 140 (1): 85-108. https://doi.org/10.1086/285404 [DOI]
39. Schoener, T. W. (1986). Mechanistic approaches to community ecology: a new reductionism? American Zoologist, 26 (1): 81-106.
40. Spoljaric, M. A. and Reimchen, T. E. (2011). Habitat‐specific trends in ontogeny of body shape in stickleback from coastal archipelago: Potential for rapid shifts in colonizing populations. Journal of Morphology, 272 (5): 590–597. https://doi.org/10.1002/jmor.10939 [DOI]
41. Spoljaric, M. and Reimchen, T. E. (2007). 10000 years later: evolution of body shape in Haida Gwaii three‐spined stickleback. Journal of Fish Biology, 70 (5): 1484-1503. https://doi.org/10.1111/j.1095-8649.2007.01425.x [DOI]
42. Triantafyllou, M. S., Triantafyllou, G. S. and Yue, D. K. P. (2000). Hydrodynamics of fishlike swimming. Annual Review of Fluid Mechanics, 32: 33-53. https://doi.org/10.1146/annurev.fluid.32.1.33 [DOI]
43. Turan, C. (1999). A note on the examination of morphometric differentiation among fish populations: The truss system. Turkish Journal of Zoology, 23 (3): 259-263.
44. Turan, C. (2000). Otolith shape and meristic analysis of herring (Clupea harengus) in the North-East Atlantic. Archive of Fishery and Marine Research, 48 (3): 283-295.
45. Videler, J. J. and Wardle, C. S. (1991). Fish swimming stride by stride: speed limits and endurance. Reviews in Fish Biology and Fisheries, 1: 23-40. https://doi.org/10.1007/BF00042660 [DOI]
46. Wood, B. M. and Bain, M. B. (1995). Morphology and microhabitat use in stream fish. Canadian Journal of Fisheries and Aquatic Sciences, 52 (7): 1487-1498. https://doi.org/10.1139/f95-143 [DOI]
47. Wootton, R. J. (1990). Ecology of teleost fishes. Fish and Fisheries Series 1. Chapman and Hall, London. 404 pp.
48. Yedier, S., Kontaş, S., Bostancı, D. and Polat, N. (2016). Otolith and scale morphologies of doctor fish (Garra rufa) inhabiting Kangal Balıklı Çermik thermal spring (Sivas, Turkey). Iranian Journal of Fisheries Science, 15 (4): 1593-1608.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

  | Journal of Animal Diversity

Designed & Developed by : Yektaweb