Volume 3, Issue 3 (9-2021)                   JAD 2021, 3(3): 93-108 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Singh K D, Bhattarai B P. Ichthyodiversity and conservation importance of the Jakhor Taal Lake in Kailali district, far western Nepal. JAD 2021; 3 (3) :93-108
URL: http://jad.lu.ac.ir/article-1-127-en.html
1- Central Department of Zoology, Tribhuvan University, P.O. Box 5275, Kathmandu, Nepal
2- Central Department of Zoology, Tribhuvan University, P.O. Box 5275, Kathmandu, Nepal , bishnu.bhattarai@cdz.tu.edu.np
Abstract:   (8580 Views)
Jakhor Taal is an ox-bow perennial lake, situated in Dhangadhi sub-metropolitan city in Kailali district, Nepal. The present study focuses on the factors determining fish diversity, socio-economic status of fishing communities and conservation challenges of Jakhor Taal. Fish sampling was done by gill net, cast net and other local fishing techniques such as Helka and Tiyari nets and Dhadiya trap. A total of 24 fish species (8 exotic and 16 native) were recorded belonging to 7 orders, 14 families and 22 genera. The order Cypriniformes was found to be highest, obtaining 41.66% of the total fish species recorded and 65.38% of total fish caught during the study period (February 2019 - August 2019) followed by Siluriformes (20.33%) and Perciformes (16.67%), respectively. The Shannon-Weiner diversity index was found highest (2.93) in winter (February) and lowest (2.76) in summer (July). Similarly, the Simpson and Evenness values were also found slightly higher during winter (February) in comparison to summer (July). The Shannon-Weiner diversity index was found highest (2.73) at station II in comparison to station I, III, and IV where it was 2.31, 2.09, and 2.04, respectively. Results from the Redundancy analysis (RDA) revealed that the environmental variables such as water temperature, depth and dissolved oxygen were found to be highly significant to most of the fish species at different stations and months. However, pH and free CO2 was not shown to have any relationship or significance. Altogether, 22 clusters were formed in which exotic species show highly significant clustering in comparison to native species. The socio-economic status of the local fishing communities is below the poverty line and the lake and its fishing resources play vital roles in their diet and income source. In the context of conservation challenges and implications, this lake is highly neglected by both governmental and local communities and this negatively affects its natural properties through habitat destruction, illegal fishing, urbanization, invasive species, and a general lack of awareness.
Full-Text [PDF 2477 kb]   (3380 Downloads)    
Type of Study: Original Research Article | Subject: Species Diversity
Received: 2021/01/20 | Accepted: 2021/06/18 | Published: 2021/09/30

References
1. Ali, M., Iqbal, F., Salam, A., Sial, F. and Athar, M. (2006). Comparative study of body composition of four fish species in relation to pond depth. International Journal of Environmental Science and Technology, 2(4): 359-364. [DOI:10.1007/BF03325897]
2. Ayub, H., Ahmad, I., Shah, S. L., Bhatti, M. Z., Shafi, N. and Qayyum, M. (2018). Studies on seasonal and spatial distribution of zooplankton communities and their diversity indices at Chashma Lake, Pakistan. Pakistan Journal of Zoology, 50 (4). [DOI:10.17582/journal.pjz/2018.50.4.1293.1298]
3. Babourina, O. and Rengel, Z. (2011). Nitrogen removal from eutrophicated water by aquatic plants, In: Singh, G., Lanza, G. R. and Rast, W. (Eds.), Eutrophication: causes, consequences and control. Springer, Dordrecht. pp. 355-372. [DOI:10.1007/978-90-481-9625-8_18]
4. Bastola, S. (2017). Study of physio-chemical parameter of Deepang Lake in Pokhara Valley, Nepal. Janapriya Journal of Interdisciplinary Studies, 2 (1): 90-95. [DOI:10.3126/jjis.v2i1.18071]
5. CBS. (2011). Nepal living standards survey 2010/2011. Central Bureau of Statistics. Thapathali, Kathmandu, Nepal. https://nada.cbs.gov.np/index.php/catalog/37/download/742 (Accessed 20 January 2021).
6. Cheng, L., Lek, S., Lek-Ang, S. and Li, Z. (2012). Predicting fish assemblages and diversity in shallow lakes in the Yangtze River basin. Limnologica, 42 (2): 127-136. [DOI:10.1016/j.limno.2011.09.007]
7. Decker, D., Smith, C., Forstchen, A., Hare, D., Pomeranz, E., Doyle‐Capitman, C., Schuler, K. and Organ, J., (2016). Governance principles for wildlife conservation in the 21st century. Conservation Letters, 9 (4): 290-295. [DOI:10.1111/conl.12211]
8. DNPWC and WWF Nepal. (2003). Factsheets on Ghodaghodi Lake. https://wwfeu.awsassets.panda.org/downloads/ghodaghodi_lake.pdf (Accessed 20 January 2021).
9. DoF. (2017). Wetlands of western Nepal: A brief profile of selected lake. Department of Forests (DoF), Ministry of Forest and Environment, Government of Nepal, Kathmandu, Nepal. 111 pp.
10. DoFD. (2012). Country profile - Nepal 2011/2012, fisheries sub-sector. Directorate of Fisheries Development (DoFD), Kathmandu, Nepal. http://cfpcc.gov.np/
11. Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur‐Richard, A. H., Soto, D., Stiassny, M. L. and Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81 (2): 163-182. [DOI:10.1017/S1464793105006950]
12. ESRI. (2020). Esri's World Imagery Map. https://www.arcgis.com/home/item.html?id=c1c2090ed8594e0193194b750d0d5f83
13. Froese, R. and Pauly, D. (2019). FishBase. World Wide Web Electronic Publication (Eds: Froese, R. and Pauly. D.) www.fishbase.org (Accessed 12 December 2020).
14. Gautam, G., Jain, R., Poudel, L. and Shrestha, M. (2016). Fish faunal diversity and species richness of tectonic Lake Rupa in the mid-hill of Central Nepal. International Journal of Fisheries and Aquatic Studies, 4 (3): 690-694.
15. Hafijur, R. M., Mahfuzul, H. M., Paul, M., Moazzem, H. M. and Rakib, H. M. (2017). Life of the riverine fishermen: present status of livelihood strategies and economic conditions at Payra River, Bangladesh. Russian Journal of Agricultural and Socio-Economic Sciences, 12 (72): 299–306. [DOI:10.18551/rjoas.2017-12.42]
16. Harper, D. A. T. (Ed.) (1999). Numerical palaeobiology. Computer-based modelling and analysis of fossils and their distributions. John Wiley and Sons, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto. x+ 468 pp.
17. Harris, J. H. (1995). The use of fish in ecological assessments. Australian Journal of Ecology, 20 (1): 65-80. [DOI:10.1111/j.1442-9993.1995.tb00523.x]
18. ICIMOD. (2013). Land cover of Nepal 2010 [Data set]. The International Centre for Integrated Mountain Development (ICIMOD). https://rds.icimo d.org/Ho me/ DataDetail?metadataId=9224
19. IUCN Nepal. (1998). The Ghodaghodi Lake Conservation Area: A Community Centered Management Plan. IUCN Nepal, Kathmandu.
20. IUCN Nepal. (2004). Conservation and sustainable use of wetlands in Nepal. Project Brief and Annexes. IUCN Nepal, Kathmandu.
21. IUCN Nepal. (2004). A review of the status and threats to wetlands in Nepal. IUCN Nepal.
22. IUCN. (2019). The IUCN Red List of Threatened Species. Version 2019-2. https://www.iucnredlist.org/species (Accessed 20 January 2021).
23. Jayaram, K. (2010). Freshwater fishes of the Indian region. Narendra Publication House, India. 616 pp.
24. Jones, M. and West, R. (2005). Spatial and temporal variability of seagrass fishes in intermittently closed and open coastal lakes in southeastern Australia. Estuarine, Coastal and Shelf Science, 64 (2-3): 277-288. [DOI:10.1016/j.ecss.2005.02.021]
25. Joshi, D. and Bijaya, K. (2017). Fish diversity of Ghodaghodi Lake in Kailali, far-west Nepal. Journal of Institute of Science and Technology, 22 (1): 120-126. [DOI:10.3126/jist.v22i1.17762]
26. Kafle, G., Balla, M. K., Baral, H. S. and Thapa, I. (2007). Ghodaghodi Lake area: resources, opportunities and conservation. Danphe, 16 (3): 1-6.
27. KC, J. K., Gurung, K. D. and Shrestha, P. D. (2013). Lowland wetlands in Nepal. The Initiation, 5: 182-193. [DOI:10.3126/init.v5i0.10269]
28. Lauridsen, T. L., Landkildehus, F., Jeppesen, E., Jørgensen, T. B. and Søndergaard, M. (2008). A comparison of methods for calculating Catch Per Unit Effort (CPUE) of gill net catches in lakes. Fisheries Research, 93 (1-2): 204-211. [DOI:10.1016/j.fishres.2008.04.007]
29. Miranda, L. E. (2011). Depth as an organizer of fish assemblages in floodplain lakes. Aquatic Sciences, 73 (2): 211-221. [DOI:10.1007/s00027-010-0170-7]
30. Muhammad, H., Iqbal, Z. and Saleemi, S. (2018). Diversity and distribution of fish fauna of Indus River at Taunsa Barrage in Punjab, Pakistan. Pakistan Journal of Zoology, 49 (1): 155-161. [DOI:10.17582/journal.pjz/2017.49.1.149.154]
31. Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Stevens, M. H. H., Oksanen, M. J. and Suggests, M. (2007). The vegan package. Community Ecology Package, 10 (631-637): 719.
32. Oksanen, A. J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., Hara, R. B. O., et al. (2015). Community Ecology Package. Vegan: R package version 2.3-0. Available online at: http://CRAN.R-project.org/package=vegan
33. Pielou, E. C. (1966). Species-diversity and pattern-diversity in the study of ecological succession. Journal of Theoretical Biology, 10 (2): 370-383. [DOI:10.1016/0022-5193(66)90133-0]
34. Ryota, S. and Hidetoshi, S. (2016). pvclust: Hierarchical clustering with P-values via multiscale bootstrap resampling [R package version 2.0-0].
35. Shannon, C. E. and Weiner, W. (1963). The mathematical theory of communication. Urban University, Illinois Press, USA. 125 pp.
36. Sharma, C. K. (1977). River system of Nepal. S. Sharma Publications, Kathmandu, Nepal. 224 pp.
37. Sharma, C. M. (2008). Freshwater fishes, fisheries, and habitat prospects of Nepal. Aquatic Ecosystem Health and Management, 11 (3): 289-297. [DOI:10.1080/14634980802317329]
38. Shinde, D. and Singh, N. U. (2014). The relationship between physico-chemical characteristics and fish production of Mod sagar reservoir of Jhabua District, MP, India. Research Journal of Recent Sciences, 3 (ISC-2013): 82-86. Retrieved from http://www.isca.in/rjrs/archive/special_issue2013/18.ISCA-ISC-2013-2AVFS-10.pdf
39. Shrestha, T. K. (2008). Ichthyology of Nepal. Himalayan Ecosphere, Kathmandu, Nepal. 388 pp.
40. Shrestha, T. K. (2019). Ichthyology of Nepal: A study of fishes of the Himalayan waters. B.J. Shrestha, Katmandu, Nepal. 388 pp.
41. Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10 (2): 126-139. [DOI:10.1065/espr2002.12.142]
42. Suzuki, R., Terada, Y. and Shimodaira, H. (2019). pvclust: Hierarchical Clustering with P-Values via Multiscale Bootstrap Resampling. Version 2.2-0. https://cran.r-project.org/web/packages/pvclust/index.html
43. Tang, S., Zhang, T., Lu, J., Li, D., Pan, J. and Duan, C. (2015). Temporal and spatial variation in fish assemblages in Lake Taihu, China. Journal of Freshwater Ecology, 30 (1): 181-196. [DOI:10.1080/02705060.2015.1007098]
44. Ter Braak, C. J. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67 (5): 1167-1179 [DOI:10.2307/1938672]
45. Trivedy, R. and Goel, P. (1984). Chemical and biological methods for water pollution studies. Environmental Publications, India. 215 pp.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

  | Journal of Animal Diversity

Designed & Developed by : Yektaweb