
Journal of Animal Diversity 
Volume 5, Issue 2 (2023)

Online ISSN 
2676-685X

Research Article http://dx.doi.org/10.61186/JAD.5.2.5 

This article is published with open access on www.jad.lu.ac.ir | © Lorestan University Press  33 

Sexual dimorphism in external morphology and pelvis of the lesser 
bandicoot rat, Bandicota bengalensis (Gray, 1835) (Mammalia: 
Rodentia: Muridae) 

Pritom Roy   , Antara Das   , Md. Asir Uddin    and Jadab Kumar Biswas*

Department of Zoology, Faculty of Biological Sciences, University of Chittagong, Chattogram-4331, Bangladesh 
*Corresponding author                               : jadabbiswas@yahoo.com

Citation: Roy, P., Das, A., Uddin, M. A. and Biswas, J. K. (2023). Sexual dimorphism in external morphology and pelvis of the lesser 
bandicoot rat, Bandicota bengalensis (Gray, 1835) (Mammalia: Rodentia: Muridae). Journal of Animal Diversity, 5 (2): 33–45. 
http://dx.doi.org/10.61186/JAD.5.2.5 

Received: 26 May 2023 

Accepted: 22 August 2023 

Published online: 6 September 2023 

Abstract 
We used linear morphometric measurements to assess secondary sexual 
dimorphism in the external traits and pelvis of the lesser bandicoot rat, 
Bandicota bengalensis (Gray). Multivariate analysis of variance revealed 
significant difference between the sexes in both external (Wilks' lambda = 0.542, 
F = 3.378, P < 0.05) and pelvis measurements (Wilks' lambda = 0.238, F = 
10.05, P < 0.05). Males were larger than females in most of the external traits. In 
contrast, females were larger in most variables of the pelvis. Separation between 
the sexes was also demonstrated in the discriminant analysis. Although 
allometric slopes did not differ between the sexes, means adjusted for allometry 
were sexually dimorphic in five out of seven variables of the pelvis. In 
conclusion, our results revealed differential patterns of secondary sexual 
dimorphism for the external morphology and pelvis in B. bengalensis. These 
patterns are explained with respect to the accessible evolutionary theories on 
mammalian sexual dimorphism. 
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Introduction 

The lesser bandicoot rat Bandicota bengalensis (Gray, 
1835) is a medium-sized terrestrial murid rodent with a 
tail shorter than its head–body length (Chakma, 2009; 
Rao et al., 2019). The face is comparatively rounded 
with a broad muzzle and pinkish round ears (Chakma, 
2009). It typically burrows in humid soil (IUCN 
Bangladesh, 2015; Rao et al., 2019). It prefers cultivated 
lands; however, it inhabits a wide range of habitats 
including bunds and edges of wetlands, gritty soil with 
high moisture content in cultivated plains, gardens, 
pasture lands, wastelands, and warehouses in human 
habitations (Chakma, 2009; Rao et al., 2019). Its diet 
consists of wheat, rice, grains, sugarcane, beans, fruits, 
vegetables, mollusks, and crabs (Khairuddin et al., 
2011). It is native to Bangladesh, India, Malaysia, 
Myanmar, Nepal, Sri Lanka, and Thailand (IUCN 
Bangladesh, 2015). In Bangladesh, it is widely 
distributed (Khan, 2008; Chakma, 2009). This species is  

considered a pest to various crops and stored grains 
in Bangladesh and other countries (Aplin et al., 2003; 
IUCN Bangladesh, 2015).  

Morphometrics, the field of biological size and shape 
analysis, investigates how the shape of organs and 
organisms varies and how their covariation relates to 
other variables (Slice, 2007; Reyment, 2010; Parés-
Casanova, 2017). Size and shape comparisons have long 
been of interest to biologists and are now addressed as the 
key aspects in morphometrics (Zelditch et al., 2004). 
Morphometric techniques quantitatively examine the 
variation of morphological characteristics of organisms as 
well as evolutionary links, developmental changes in 
form, and the effect of mutations on shape (Claude, 2008; 
Parés-Casanova, 2017; Coker et al., 2020).  

Secondary sexual dimorphism is the difference in 
body characteristics between males and females of 
the same species (Issac, 2005; Biswas et al., 2020). 
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In vertebrates, sexual dimorphism is a common 
phenomenon (Crook, 1972; Ralls, 1977; Parker, 
1992; Weckerly, 1998; Schulte-Hostedde et al., 2000, 
2001; Issac, 2005). It has become an alluring topic 
for evolutionary biologists due to its prevalence in 
animals (Schulte-Hostedde et al., 2001; Issac, 2005; 
Nandini, 2011). There are a variety of ways in which 
the sexes of mammalian species differ from one 
another (McPherson and Chenoweth, 2012). The 
overall body size and specific morphological traits of 
an organism are usually subject to natural selection 
(Andersson, 1994; Szekely et al., 2007; Nandini, 
2011). In most mammals, male-biased sexual 
dimorphism prevails, whereas female-biased sexual 
dimorphism is found in cetaceans, bats, and flying 
squirrels (Schulte-Hostedde, 2007; Nandini, 2011; 
Biswas et al., 2020). 

External morphological traits are important in species 
descriptions because they help to comprehend the 
function, evolution, and flexibility of the forms of an 
organism (Ramirez-Portilla et al., 2022). The size of 
an animal’s body is one of the most important 
physical characteristics that affects its behavioral 
activities and ecological progress (Ralls, 1977). 
Therefore, the external morphological characteristics 
of an animal serve as indicators of its biology, 
ecology, and social behavioral patterns (Kent, 2010).  

The mammalian pelvis consists of three bones in 
each halve—pubis, ilium, and ischium (Matysiak et 
al., 2017). The two halves (right and left) of the 
pelvis ventrally connect at the pubic symphysis and 
on the dorsal side with sacral vertebrae through the 
ilium (Rommel and Reynolds, 2009). The ischium 
and pubis are generally situated at the ventral part of 
the ilium. The obturator foramen, an opening part of 
the pelvic girdle, is located at the posteroventral part 
of the pelvis, and is surrounded by all three bones 
(Rommel and Reynolds, 2009; Matysiak et al., 2017). 
In most mammalian species, the pelvis is typically 
sexually dimorphic in relation to both size and shape 
(Berdnikovs et al., 2007). In species where males 
have a larger femoral size, females are typically 
larger in pelvis size than males (Schultz, 1949; 
Tague, 2005). Pelvic dimorphism typically exists 
even in species having a small difference in body size 
and shape between the sexes (Krystufeq, 1998; 
Schutz et al., 2009; Matysiak et al., 2017).  

B. bengalensis has been studied in Bangladesh by 
several researchers (Brooks et al., 1985; Khalequzzaman 
and Hossain, 1999; Hossain and Khalequzzaman, 
2000), who mostly focused on its ecological aspects. 
The taxonomical features of B. bengalensis have 
been studied by many researchers (Ellerman, 1961; 
Musser and Brothers, 1994; Aplin et al., 2003; Singh 
et al., 2011; Pimsai et al., 2014; Pacheco, 2019; Rao 
et al., 2019). Moreover, Krystufek et al. (2016) 
reported non-significant sexual dimorphism in the 
cranium, mandible, and molars of B. bengalensis. 
Although some morphometric information is 

available on male and female bandicoot rats (Singh 
and Sangha, 2015), no previous study has analyzed 
the patterns of sex differences in the external 
morphology and pelvis of B. bengalensis in detail. 
Since natural selection and variability are intimately 
connected, measures of variation are the key 
component in evolutionary studies (Biswas and 
Motokawa, 2019). Therefore, this study is an attempt 
to examine the sex differences in the external 
morphology and pelvis of B. bengalensis using 
different statistical analyses.  

The major objectives of this study were to (1) 
analyze the patterns of differences in external 
morphological traits between males and females of B. 
bengalensis, (2) investigate the variation between the 
male and female pelvis, and (3) focus on the possible 
factors related to those patterns of dimorphism in B. 
bengalensis from the Chittagong University campus 
and its surrounding areas of Bangladesh. 

Material and Methods 

Specimens and morphometric measurements 

A total of 31 adult specimens (12 males and 19 
females) of B. bengalensis were used for external 
morphological measurements, whereas 30 specimens 
(11 males and 19 females) were used for pelvic 
measurements (Fig. 1). The specimens were 
identified as B. bengalensis based on taxonomic keys 
by Blanford (1891) and Aplin et al. (2003). We used 
specimens collected from the Chittagong University 
campus and its surrounding area from November 
2021 to July 2022; these were already trapped by 
local people. Moreover, we also captured some live 
specimens using metal cage traps (Onwuama et al., 
2012). The trapped specimens were euthanized using 
chloroform in the enclosed container (Onwuama et 
al., 2012). The guidelines of the American Society of 
Mammologists were followed for trapping and 
handling the animals (Gannon et al., 2007; Shintaku 
et al., 2010). All protocols of this study were 
approved by the Animal Ethics Review Board of the 
Faculty of Biological Sciences, University of Chittagong 
(reference number – AERB-FBSCU20230202-(1)).  

Sexes were determined by the presence of mammary 
glands in females and penis in males (Shoma et al., 
2015). The age of each specimen was verified based 
on the eruption and wear of the molar teeth (Carleton 
and Musser, 1989; Voss and Marcus, 1992). With 
some modifications, six external morphometric 
measurements were taken following Shintaku et al. 
(2012) (Table 1; Fig. 2). Pelvic bones were prepared 
using both a boiling process (Auffray et al., 2011) 
and chemical maceration (Onwuama et al., 2012) 
with some modification. Seven morphometric 
measurements were taken for the pelvic girdle 
following several previous studies (Kuncova and 
Frynta, 2009; Balciauskiene and Balciauskas, 2016; 
Matysiak et al., 2017) (Table 1; Fig. 3). 
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The measurements of the head–body length, as well as 
the tail length, were taken with a scale and measuring 
tape, whereas other measurements were taken using a 
slide caliper adjusted to the nearest 0.1 mm. 

Morphometric analyses 

Summary statistics (arithmetic mean (M) and standard 
deviation (SD)) were calculated for all measurements 
of the external morphology and pelvis. Based on log-
transformed data, we conducted multivariate analysis 

of variance (MANOVA) to examine the overall sex 
differences in the external traits and pelvis (Biswas 
and Motokawa, 2019). Moreover, sexual size 
dimorphism (SSD) was estimated using the following 
formula: SSD = M/F, where M is the mean value of 
males and F is the mean value of females of 
morphometric traits (Smith, 1999). The Mann–
Whitney U-test was used to investigate differences in 
each variable between the sexes (Prevosti and Lamas, 
2006; Biswas and Motokawa, 2019).  

Figure 1: The lesser bandicoot rat, Bandicota bengalensis in dorsal (A) and ventral (B) views. 
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Figure 2: External measurements (HBL: head–body length; TL: tail length; H: head length; E: ear length; FF: 
forefoot length; and HF: hindfoot length) used in Bandicota bengalensis. 

Figure 3: Pelvis measurements (LP: length of pelvis; LP1: length of ilium; LP2: length of ischium; LPU: 
greatest length of pubis; LOF: length of obturator foramen; WOF: width of obturator foramen; and WPU: width 
of pubis) used in Bandicota bengalensis.  



Sexual dimorphism in external morphology and pelvis of the lesser bandicoot rat … 

Journal of Animal Diversity (2023), 5 (2): 33–45 | www.jad.lu.ac.ir  37 

Table 1: List of external and pelvis measurements and abbreviations for Bandicota bengalensis. 

Abbreviation Measurement 

External Morphology 

HBL Head and body length 

TL Tail length 

HF Hindfoot length 

FF Forefoot length 

H Head length 

E Ear length 

Pelvic Morphology 

LP Length of pelvis 

LP1 Length of ilium 

LP2 Length of ischium 

LPU Greatest length of pubis 

WPU Width of pubis 

LOF Length of obturator foramen 

WOF Width of obturator foramen 

Principal component analysis (PCA) was carried out 
based on the correlation matrix of log-transformed data 
to determine the intraspecific morphological variation 
(Motokawa et al., 2003; Biswas et al., 2020). We 
conducted a linear discriminant analysis (LDA) to 
examine the overall distinctiveness between the sexes 
(Fernández-Arjona et al., 2017; Biswas and Motokawa, 
2019). The sexes were also compared using an analysis 
of covariance (one-way ANCOVA) based on log-
transformed variables that showed significant 
correlation with head–body length (HBL) and length of 
pelvis (LP) for external morphology and pelvis, 
respectively (Motokawa et al., 2003; Biswas and 
Motokawa, 2019). All analyses were run using the 
software PAST (ver. 4.12b) (Hammer et al., 2001).  

Results 

Sexual dimorphism in external morphology 

The MANOVA revealed significant difference between 
the sexes (Wilks' lambda = 0.542, F = 3.378, P < 0.05). 
Descriptive statistics showed that males had slightly 
larger mean values for most of the external variables 
than females (Table 2). Slightly larger mean values 
were observed for tail length (TL) and ear length (EL) 
in females than in males (Table 2). The range of SSD 
was from 0.997 (TL) to 1.043 (hindfoot length (HF)) 
(mean: 1.015 ± 0.018; n = 6) (Table 2). The Mann–
Whitney U test showed a significant difference between 
the sexes in HF (U = 34.5, P < 0.05), which was 
significantly larger in males than in females. 

Sexual dimorphism of the pelvis 

As the Mann–Whitney U test showed non-significant 
difference between the right and left side variables 
(LP (U = 440.5, P > 0.05), LP1 (U = 408, P > 0.05), 
LP2 (U = 392, P > 0.05), LPU (U = 419.5, P > 0.05), 
WPU (U = 447, P > 0.05), LOF (U = 434.5, P > 
0.05), and WOF (U = 398, P > 0.05)) of the pelvis, 
right side variables were used for further analyses. 
Descriptive statistics showed that females were larger 

than males in all pelvic measurements, except for 
WPU (Table 3). Considering the overall variables, 
MANOVA demonstrated significant difference 
between the sexes for pelvic bones (Wilks’ lambda = 
0.238, F = 10.05, P < 0.05). The range of SSD values 
was within 0.888 to 1.429 for most of the variables 
(LP, LP1, LP2, LPU, LOF, and WOF) (Table 3). 
Moreover, significant differences were detected 
between the males and females for three variables 
(LPU (U = 55.5, P < 0.05), WPU (U = 11.5, P < 
0.05), and LOF (U =38.5, P < 0.05)).  

Principal component analysis 

In the principal component analysis of the external 
morphology, PC 1, PC 2, PC 3, and PC 4 explained 
49.44%, 17.20%, 13.94%, and 10.47% of the total 
variation, respectively. PC 1 showed positive 
loadings for all variables (Table 4) and demonstrated 
high factor loadings (> 0.60) for HBL, TL, H, and E 
(Table 4). In PC 2, FF showed a relatively high 
positive loading and large positive loading was found 
for HF in PC 3 and for E in PC 4 (Table 4). Scatter plots 
based on the scores of the first and second (PC 1 and PC 
2), first and third (PC 1 and PC 3), second and third 
(PC2 and PC3), and third and fourth (PC 3 and PC 4) 
components revealed that sexes partly overlapped with 
each other in all combinations (Fig. 4). 

For the pelvis, the first four principal components 
explained 96.03% of the total variation. PC 1, PC 2, 
PC 3, and PC 4 explained 58.50%, 18.85%, 11.39%, 
and 7.29% of the variation, respectively (Table 5). 
High factor loadings (> 0.60) were seen for all 
variables, except two (WPU and WOF) in PC 1 
(Table 5). In PC 2, WPU showed a relatively large 
positive loading. Large positive loadings were also 
found for WOF in PC 3 and for LOF in PC 4 (Table 
5). Scatter plots based on the scores of first and 
second (PC 1 and PC 2) and second and third (PC2 
and PC3) components showed a clear separation 
between the sexes (Fig. 5). 
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Discriminant analysis 

Discriminant functions in the LDA of the log-
transformed external morphological data showed the 
largest coefficient for HF (0.0100), followed by H 
(0.0065), HBL (0.0052), FF (0.0010), TL (-0.0002), 
and E (-0.0006) (Table 4). On axis 1, most male 
specimens (10/12) showed positive scores, while  

most female specimens (16/19) exhibited negative 
scores. Therefore, the scores of axis 1 revealed that 
83.87% of individuals were classified into males or 
females (Fig. 6A). However, when the leave-one-out 
cross-validation approach (Jackknifing) was used to 
cross-validate the distinctiveness, only 64.52% of 
specimens were found to be correctly discriminated 
by the sexes using the external traits. 

Table 2: Summary statistics of morphometric data (in mm) of the external morphology in Bandicota bengalensis 
(n: sample size; SD: standard deviation; SSD: sexual size dimorphism).  

Variables 
Males (n = 12) Females (n = 19) 

SSD 
Mean SD Min Max Mean SD Min Max 

HBL 176.17 8.91 163.0 192.0 172.47 10.57 157.0 190.0 1.021 
TL 145.58 5.35 138.0 154.0 145.95 10.29 126.0 169.0 0.997 
HF 32.68 1.02 31.10 34.20 31.34 0.96 29.50 33.40 1.043 
FF 18.30 1.08 16.60 20.10 18.22 0.99 16.30 20.40 1.004 
H 50.33 2.24 47.20 53.50 48.99 2.56 42.50 53.80 1.027 
E 21.76 0.97 20.00 22.90 21.81 0.80 20.50 23.40 0.998 

Table 3: Summary statistics of morphometric data (in mm) of the pelvis in Bandicota bengalensis (n: sample 
size; SD: standard deviation; SSD: sexual size dimorphism).  

Variables 
Males (n = 11) Females (n = 19) 

SSD 
Mean SD Min Max Mean SD Min Max 

LP 37.82 2.86 31.4 40.5 39.13 2.09 35.8 43.4 0.967 
LP1 24.99 1.86 20.2 26.5 25.36 1.34 23.0 28.0 0.985 
LP2 11.74 1.11 9.6 13.0 11.96 1.1 9.8 14.1 0.982 
LPU 14.55 1.09 12.7 15.8 15.53 0.98 13.8 17.4 0.937 
WPU 1.8 0.3 1.4 2.4 1.26 0.2 1.0 1.7 1.429 
LOF 9.39 0.72 8.0 10.1 10.58 1.56 9.3 16.3 0.888 
WOF 3.97 0.41 3.4 4.6 4.04 0.27 3.6 4.7 0.983 

Table 4: Factor loadings for principal component analysis of Bandicota bengalensis based on correlation matrix 
of log-transformed external morphometric traits (PC 1, PC 2, PC 3, and PC 4) and first discriminant coefficient 
(axis 1) (High factor loadings (> 0.06) are shown in bold). 

Variables PC 1 PC 2 PC 3 PC 4 Axis 1 
HBL 0.782 -0.339 -0.317 0.026 0.0052 
TL 0.853 0.034 -0.196 -0.291 -0.0002 
HF 0.506 -0.189 0.833 -0.050 0.0100 
FF 0.416 0.845 0.054 -0.270 0.0010 
H 0.873 -0.260 -0.038 -0.093 0.0065 
E 0.659 0.314 0.005 0.678 -0.0006 

Eigenvalues 2.966 1.032 0.836 0.628 - 
Variance (%) 49.44 17.20 13.94 10.47 - 

Table 5: Factor loadings for principal component analysis of Bandicota bengalensis based on correlation matrix 
of log-transformed pelvis variables (PC 1, PC 2, PC 3, and PC 4) and first discriminant coefficient (axis 1) (High 
factor loading (> 0.06) are shown in bold).    

Variables PC 1 PC 2 PC 3 PC 4 Axis 1 
LP 0.970 0.098 -0.118 -0.106 0.0043 

LP1 0.914 0.284 -0.011 -0.082 0.0020 
LP2 0.934 0.152 0.030 -0.117 0.0024 
LPU 0.911 -0.105 -0.263 -0.087 0.0080 
WPU 0.061 0.885 0.368 0.256 -0.0434 
LOF 0.668 -0.408 -0.009 0.621 0.0138 
WOF 0.409 -0.445 0.780 -0.156 0.0023 

Eigenvalues 4.094 1.272 0.828 0.515 - 
Variance (%) 58.48 18.18 11.83 7.36 - 
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Figure 4: Plots of the scores of PC 1 and PC 2 (A), PC 2 and PC 3 (B), PC 1 and PC 3 (C), and PC 3 and PC 4 
(D) for the external morphological traits of Bandicota bengalensis. Males and females are indicated by solid and 
open circles, respectively.   

Figure 5: Plots of the scores of PC 1 and PC 2 (A), and PC 2 and PC 3 (B) for the pelvic measurements of 
Bandicota bengalensis. Males and females are indicated by solid and open circles, respectively. 
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Figure 6: Linear discriminant function in the external morphology (A) and pelvis (B) of Bandicota bengalensis. 
Male and female specimens are represented by light blue and light green bars, respectively. 

For the pelvis, the discriminant functions showed the 
largest coefficient for LOF (0.0138), followed by 
LPU (0.0080), LP (0.0043), and LP2 (0.0024) (Table 
5). Along axis 1, most male specimens (10/11) showed 
negative scores, while most female specimens (18/19) 
exhibited positive scores. Therefore, the scores of axis 
1 showed that 93.33% of individuals were classified 
into each sex (Fig. 6B). However, Jackknifed data 
showed slightly lowered (90 %) the proportion of 
correctly classified specimens by the sexes using 
pelvic measurements.  

One-way ANCOVA: Comparison between the sexes 

As three external variables (TL, H, and E) showed 
significant correlation with HBL in combined data, 
they were considered for this analysis. One-way 
ANCOVA indicated no significant differences in the 
slopes and adjusted means in the external 
morphology between the sexes (Table 6). In addition, 
four pelvic variables (LP1, LP2, LPU, LOF) showed 
significant correlation with LP and these were 
considered for one-way ANCOVA. Although slopes 
did not differ significantly between the sexes, the 
adjusted means of LP1, LPU, and LOF were found to 
differ significantly between males and females of B. 
bengalensis (Table 6; Fig. 7). However, the sexes 
almost completely overlapped in the plot of LP1 
against LP (Fig. 7A). 

Discussion 

Our findings indicated that males were larger than 
females for most of the studied external 
morphological traits of B. bengalensis. MANOVA 
revealed significant differences in the external traits 
between the sexes. One-way ANCOVA showed that 
there was no significant difference between the sexes 
for the slope and adjusted mean values. Therefore, 
sexual dimorphism is mostly size related for external 
traits in B. bengalensis (Biswas et al., 2000).  

Figure 7: Plots of LP versus length of ilium (A), pubis 
(B), and obturator foramen (C) in Bandicota bengalensis. 
Male and female specimens are represented by light 
blue and light green circles, respectively. 
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Table 6: Adjusted means and slopes of external morphology and pelvis variables between the sexes of 
Bandicota bengalensis; based on analysis of covariance (one-way ANCOVA) (M: male; F: female; Diff: 
difference; n.s.: non-significant). 

Variables 
Adjusted Mean 

F Diff 
Slope 

F Diff 
M F M F 

External 
Morphology 

TL 2.16 2.17 0.730 n.s. 0.48 0.74 0.571 n.s. 
H 1.70 1.69 1.054 n.s. 0.63 0.57 0.057 n.s. 
E 1.34 1.34 0.382 n.s. 0.28 0.25 2.88E-06 n.s. 

Pelvis 

LP1 1.41 1.39 5.113 P < 0.05 0.97 0.94 0.061 n.s. 
LP2 1.08 1.07 3.262 n.s. 1.21 1.50 1.568 n.s. 
LPU 1.17 1.19 7.438 P < 0.05 0.91 1.02 0.427 n.s. 
LOF 0.98 1.02 4.495 P < 0.05 0.70 1.07 0.367 n.s. 

Previous works found that males are usually heavier 
than females in most mammals (Kaur and Gurava, 
1983; Rao et al., 2019). Sexual dimorphism in 
mammals is thought to evolve to ensure better 
reproductive success, usually in males (Shine, 1989; 
Nandini, 2011; McPherson and Chenoweth, 2012). 
Moreover, male–male competition for territory or 
resources was evoked to explain the evolution of 
male-biased sexual dimorphism, which is ultimately 
associated with male reproductive success 
(Anderson, 1994; Nandini, 2011). 

A previous study reported that dominant males of B. 
bengalensis mostly take part in sexual activity (Parrack 
and Thomas, 1970). B. bengalensis is notoriously 
intolerant and male–male aggression has been reported 
(Sridhara, 1986). Therefore, male-biased sexual 
dimorphism in B. bengalensis may have evolved due to 
greater selection pressures on males (McPherson and 
Chenoweth, 2012), as males are dominant and exhibit 
more social interactions than females (Parrack and 
Thomas, 1970; Khairuddin et al., 2011; Rao et al., 
2019). Moreover, females are less active and are 
observed gathering food in holes (Parrack and Thomas, 
1970). Females with small body sizes could be able to 
reach small burrows, especially during pregnancy 
(Gliwicz, 1988; Wang, 2017). 

Univariate analysis showed that the hind foot was 
significantly longer in males than in females of B. 
bengalensis. Discriminant analysis indicated that sexes 
could largely be differentiated using hind foot length. 
Principal component analysis showed high factor 
loadings for the fore and hind feet lengths in PC 2 and 
PC 3, respectively. Larger hind feet were also found in 
males of deer mice (Xia and Millar, 1986). The distal 
limb elements are more biomechanically important for 
half-bounding locomotion than proximal elements 
(Lamers et al., 2001). Therefore, sex differences in distal 
limbs are expected due to the difference in perspectives 
of locomotory strategies (Lamers et al., 2001). Previous 
studies reported that there is an association between hind 
foot length and mobility (Dice, 1940; Baker, 1968; 
Smartt and Lemen, 1980; Xia and Millar, 1986). Males 
normally possess a larger home range than females and 
show greater mobility and more aggressive behavior 
(Fulk et al., 1981, Sridhara, 1986). These phenomena  

might indicate the necessity of larger hind feet in males 
for greater mobility to maintain a relatively larger home 
range (Fulk et al., 1981, Sridhara, 1986).  

On the other hand, female-biased sexual dimorphism 
was observed for the pelvis in B. bengalensis. Our 
results showed that the length of the pelvis, pubis, 
and obturator foramen was larger in females and the 
width of the pubis was smaller in females than in 
males. The Mann–Whitney U test showed a 
significant difference in the pubis length, pubis 
width, and obturator foramen length between the 
sexes. Moreover, one-way ANCOVA also 
demonstrated significant differences in the adjusted 
means of LP1, LPU, and LOF between the males and 
females. These indicate a relatively longer and 
thinner pubis in females than in males, which 
strongly supports previous findings in the bank vole 
(Clethrionomys glareolus (Schreber)) (Matysiak et al., 
2017) and striped field mouse (Apodemus agrarius 
(Pallas)) (Balciauskiene and Balciauskas, 2016). It has 
long been known that the pelvic regions of certain 
mammals exhibit intraspecific structural diversity; 
however, the difference in single pelvis bones was not 
characterized and linked to sexual dimorphism until 
1936 (Gardner, 1936). Pelvic sexual dimorphism has 
also been observed in Apodemus Kaup and Mus 
Clerck (Gardner, 1936; Dunmire, 1955).  

Principal component analysis showed a clear separation 
in the form of the pelvis between males and females. The 
discriminant analysis also implied great distinctiveness 
between the sexes for pelvic morphology. The structural 
differences in the pelvis between males and females 
might be the consequences of hormonal changes, 
particularly of estrogen, throughout puberty (Gardner, 
1936; Uesugi et al., 1992; Iguchi et al., 1995; Berdnikovs 
et al., 2007; Matysiak et al., 2017). The pelvis of females 
can be larger than males for reproduction purposes, as the 
pelvic girdle plays a role in pregnancy and childbirth 
(Matysiak et al., 2017). The birth canal needs to be 
enlarged during the pregnancy period of mammalian 
species. Therefore, the pubic bones of females could be 
elongated and thinner because the pubis typically makes 
up a major portion of the birth canal (Leute-negger, 
1974; Ridley, 1995; Matysiak et al., 2017). 



Roy et al.  42 

Journal of Animal Diversity (2023) | © Lorestan University Press 

Conclusions 

This study suggests that B. bengalensis is male-biased 
in secondary sexual dimorphism for the external 
morphology and female-biased for pelvis. These 
indicate differential patterns of secondary sexual 
dimorphism in the external morphology and pelvis of B. 
bengalensis, which may be associated with sexual 
selection and reproductive aspects, respectively.  
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