Environmental factors and benthic macrofaunal distribution in the establishment of a baseline for coastal management in Chabahar Bay, Gulf of Oman, Iran

Hoda Khaledi

1Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran
*Corresponding author: hodakhaledi@yahoo.com

Abstract

Benthic macrofauna has a pivotal role in the energy flow and material cycles of marine ecosystems. Abiotic and biotic factors determine the presence and distribution of benthic macrofauna. The present study investigated possible relationships between benthic macrofauna and natural abiotic factors along the coastal region of the Gulf of Oman, including the north of Chabahar Bay, Konarak, and Tis. This was achieved through survey of the supra-littoral and intertidal zones at low tide, during the cold and warm seasons. In each zone, nine transects were sampled at random using quadrats. Then, sediment characteristics and macrofaunal abundance were determined. Mollusks and echinoderms had the highest and the lowest species richness, respectively. The average values for the Shannon–Wiener index of the transects at Tis, north of Chabahar Bay, and Konarak were 3.22, 3.28, and 3.20 in the warm season, respectively, while the index reached 3.29, 3.47, and 3.17 in the winter. Regardless of seasonality, the level of biodiversity was at a maximum in the northern part of Chabahar Bay, and Konarak showed the minimum biodiversity. The results of multi-linear regression analysis proposed that non-biological factors are suitable proxies for predicting the levels of species density in the study regions (R² = 0.72, F(6,71) = 2.25, p < 0.05).

Key words: Anthropogenic changes, ecological diversity, invertebrates, macrobenthos, marine biodiversity

Introduction

Coastal areas are ecologically vulnerable zones because of extensive human activities and the high biodiversity they possess. Natural and human-induced stressors have imposed various sorts of destructive effects on such ecosystems worldwide (Da-Silva et al., 2002; Dias-Silva et al., 2010).

Sediments are important biotopes of the marine environment. They are dynamic systems in which the interchange and re-distribution of chemicals are steadily happening (Seyed Hashtroudi et al., 2022). On the other hand, sediment-dwelling organisms, and especially macrofauna, play significant roles in marine ecosystems, such as nutrient cycling, dispersion, the burial of sediments, and secondary production (Snelgrove, 1998).

Relationships between the macrobenthos and natural environmental factors can be used to characterize seafloor habitats, and to establish baseline knowledge which enables the detection of their spatial and temporal variations (Bolam et al., 2008; Shumchenia and King, 2010). In general, abiotic factors determine the broad distributional patterns of benthic organisms, while abiotic and biotic factors operate together at a smaller scale (Ellingsen, 2002). Moreover, macrobenthic species are appropriate ecological indicators because most of them cannot migrate out of their habitat, and they exhibit different tolerances to environmental stress (Dauer, 1993).
Over the past few decades, anthropogenic pressures and diminishing biological diversity have increased interest in applied ecological research (Le Bris and Glémarec, 1996; Desroy et al., 2002; Ysebaert and Herman, 2002).

Applied ecological research provides information about local biodiversity and discerns damaged habitats that need protective measures and remediation efforts. In such studies, the identification of factors responsible for the spatial distribution of macrofaunal assemblages is of great importance, especially when distinguishing between natural and anthropogenic changes is a topic of interest (Ysebaert and Herman, 2002; Ellis et al., 2006; Bolam et al., 2008). In practice, it helps to manage habitats and resources much more effectively. For instance, the establishment of suitable marine protected areas can be well-scrutinized using ecosystem-based approaches (Desroy et al., 2002; Ysebaert and Herman, 2002; Fraschetti et al., 2011).

Chabahar Bay is an omega-shaped (Ω) body of shallow water (depth range= 4–22 m, mean depth = 12 m, surface area= 290 km²) located on the northern coast of the Gulf of Oman, Iran (Seyed Hashtroudi et al., 2022) (Fig. 1). The climate of this subtropical bay is hot and humid, with harsh summers (~47 °C) and moderate winters (~20–28 °C) (Maghsoudlou et al., 2020). Periodic monsoons, originating from the Indian Ocean, generate variable amounts of precipitation (mean depth= 15 cm/year) and frequent storm surges in the Bay. In addition, there are coral communities on the bay, increasing the biodiversity levels of the area. According to the study of Maghsoudlou et al. (2020), the total macrobenthos abundance in Chabahar Bay is 7,873 ind/m² (mean abundance= 40.1 individuals/m²). The species richness and the Shannon diversity indexes (H’ based on log_; range from 5 to 22 taxa (mean= 11) and 1.44–3.95, respectively.

The objectives of this study were i) to determine the baseline information of the local biodiversity and ii) to rank the natural abiotic factors responsible for the soft-bottom microfaunal distribution along the coasts of Chabahar Bay. To achieve the objectives, various factors were analyzed and linked to the observed biodiversity of macrofauna in the region of interest.

Material and Methods

Sampling

This study was conducted during two well-defined seasons: a warm season between August and September (2016) and a cold season between December (2016) and February (2017). Using tidal tables presented by the Iran Hydrography website (http://www.iranhydrography.org), suitable times for sampling at Konarak, Tis, and the northern part of Chabahar Bay were selected. The location of sampling points included fishery and urban centers (Tis and Konarak), and mangal ecosystem and desalination plant (north of Chabahar Bay) (Fig. 1).

Three transect lines were selected and divided into distinct zones, i.e., supra-littoral, mid-littoral, low-littoral, and sub-littoral, with an average width of 10 m, 80 m, and 30 m, respectively. The divisions were performed to investigate possible horizontal zonation of detected macrobenthos in the region. At the sampling sites, three replicates of the sediments (~1 kg) were gathered at random using a quadrad (25 cm x 25 cm x 30 cm, penetration depth= 15 cm) and a clean shovel. The samples were stored in clean aluminum containers. The geographical coordinates of each transect (Fig. 1) were determined using a GPS-60CSX device (Garmin, USA). The samples were then put into an ice bag and immediately transferred to the Biological Laboratory of the Iranian National Institute for Oceanography and Atmospheric Science (INIOAS).

During the laboratory work, macrobenthic fauna were isolated in several steps including sieving, staining, sorting, identification, and counting (Maghsoudlou et al., 2020). The macrofauna were separated from other materials and sediment using a 0.5 mm mesh size sieve. For improved separation, the specimens were stained with 0.5 g L⁻¹ Rose Bengal. The sorting was done under a Nikon SMZ1500 stereomicroscope. The sorted macrofauna were fixed in 70% ethanol until identification or for further use. The identification step was precisely performed with the aid of the appropriate guidelines presented by Barnes (1987), Eleftheriou and McIntyre (2005), and Fatemi and Attaran-Fariman (2015). Furthermore, six environmental variables were recorded during each sampling in both the cold and warm seasons, including salinity, temperature, turbidity, pH, electrical conductivity (EC), and organic matter (OM). To measure OM, the burning method was employed (Buchanan, 1984).

Sediment analysis

In this study, sediment particles were divided into four grain-size groups: 1. Coarse sand (> 500 µm), 2. Medium sand (500–250 µm), 3. Fine sand (250–125 µm), and 4. Mud (< 125 µm). The grain size of the sampled sediment was determined by a wet sieving method using 4 mm, 500 µm, 250 µm, 125 µm, and 63 µm sieves (Eleftheriou and McIntyre, 2005). First, 25 g oven-dried sediment of each sample (original weight) was weighed and transferred into a beaker containing 250 mL of water. Then, 10 mL of 6.2 g L⁻¹ sodium hexametaphosphate (NaP03)₆ was added to disperse the clay particles. The particles were broken up with a glass rod, and then stirred mechanically for 10–15 minutes. The mixture was allowed to soak overnight and stirred again for an additional 10–15 minutes. The dispersed sediment suspension was washed through the 63 µm sieve. The water was replaced at intervals and sieving and washing was continued on the sediments until no further fine particles were washed out. The sediments remaining on the 63 µm sieve were dried in the oven at 100 °C.
The dried sediments were finally sieved through the mentioned sieve series using a mechanical shaker. The weight difference of every sieve was recorded before and after the sieving process (ΔW). In the end, the percentage of various grain sizes was calculated using the following equation. The results of mud were not used for grain size analysis according to the method (Buchanan, 1984).

\[
\text{Grain size, } \% = 100 \times \frac{\Delta W_i}{\text{original weight}}
\]

Data processing and statistical analysis

The Shannon–Wiener index was used to determine biodiversity. The formula of this index is as follows:

\[
H' = \sum_{i=1}^{N} \left(\frac{n_i}{N} \right) \times \ln \left(\frac{n_i}{N} \right)
\]

where \(n_i\) is the number of individuals in species \(i\) and \(N\) is the total number of individuals recorded (Jorgensen et al., 2005).

Descriptive statistics and the normality status of the dataset were investigated using SPSS STATISTICS 11.5 package (SPSS Inc., USA). Since the calculated Shannon–Wiener indices were normally distributed (Shapiro–Wilk test, \(p > 0.05\)), possible differences among the stations in various seasons were examined with a two-way analysis of variance. This examined the hypothesis whether the means of biodiversity in the two seasons are equal or not in the stations of interest. In addition, multi-linear regression analysis was performed using a forward stepwise method. It was run to quantify the possibly significant correlations between abiotic factors (predictor variables), and benthos biodiversity (response variable). In all statistical analyses, significant differences were considered within a 95 percent confidence interval (\(\alpha < 0.05\)).

Results

During all sampling seasons, a total of 105 specimens of macrobenthic species were collected and identified in the studied stations. Macrobenthic specimens were related to four higher-level taxa (phylum or class), including Mollusca, Arthropoda, Polychaeta, and Echinodermata. Mollusca (gastropods and bivalves) and Echinodermata had the highest and lowest species richness, respectively (Figs. 2–4).

The results of the two-way ANOVA revealed that there was a significant difference between the Tis and Konarak transects in the case of water temperature in the cold and warm seasons (\(p = 0.03, \text{df}=8\)). Such a significant difference was not detected for salinity (\(p = 0.1, \text{df}=8\)), pH levels (\(p = 0.1, \text{df}=8\)), and electrical conductivity (\(p = 0.1, \text{df}=8\)). On the other hand, organic matter (\(p = 0.03, \text{df}=8\)), and water turbidity (\(p = 0.02, \text{df}=8\)) showed significant differences in the regions of study.

![Figure 1: Spatial coordinates and map of the monitored sectors at Chabahar Bay, Gulf of Oman, Iran. (Source of Map: Google Earth).](image-url)
The results of multiple regression analysis showed that there was a positive and significant relationship between species density and non-biological factors including, temperature, sedimentary organic matter, and water turbidity ($R^2 = 0.72$, $F_{(6,71)} = 2.25$, $p < 0.05$) (Table 1).

The average Shannon–Wiener indices for the transects of Tis, north of Chabahar Bay, and Konarak in the warm season were 3.22, 3.28, and 3.20, respectively, while the indices reached 3.29, 3.47, and 3.17 in the winter. In both seasons, the species richness in northern Chabahar Bay showed the
The results of the sediment analysis are shown in Tables 2 and 3. Generally, the amount of medium and coarse sand in all stations was less than the fine sand. In almost all stations, the amount of these components was not constant among different stations. According to the following tables, the substrate type at Tis, north of Chabahar Bay, and Konarak was dominated by rock and boulders, boulders and rubble, and medium-sized sediments, respectively.

Discussion

Coastal areas are valuable habitats due to the availability of resources that highly support biodiversity. These habitats also play an important role in the production and cultivation of seafood for human consumption and other commercial activities (Naylor et al., 2000; Hejazy et al., 2023). However, due to the increasing development of economic activities, agriculture, and the entry of sewage and waste, the quality of these habitats has been diminished and their role in feeding and maintaining important fisheries species has reduced (Salm et al., 2000; Christie et al., 2000; Gallacher et al., 2016).

The design and implementation of effective management of marine protected areas such as coastal areas require ecological information (Beger et al., 2007; Perschke et al., 2023). In this study, the biodiversity sub-criterion was measured for the shores of Chabahar Bay based on the results of the Shannon–Wiener index, which expresses the difference in biodiversity for the protection of benthos habitat (Molan et al., 2013; Varnes and Olsen, 2023; Naz et al., 2016). The Shannon–Wiener index results reiterated that there is a considerable difference between biodiversity levels calculated for the warm and cold seasons in the northern Chabahar Bay and Tis transects. Such a difference, however, was not observed in the case of the Konarak transect. Moreover, the biodiversity of the Konarak transect was at the minimum in comparison. It is worth noting that the proportion of fine-grained sediments was relatively higher in this transect (Tables 2, and 3). In contrast, the dissolved oxygen levels were low in this transect. The decrease in the amount of oxygen (Wishner et al., 1990) and a significant presence of finer particles (Jegadeesan and Ayyakkannu, 1992) can affect the biodiversity of macrofauna. This result should be interpreted with a consideration that the studied transects were all located on beaches of Chabahar Bay, in which seasonal monsoons are strong enough to mix the sediments throughout the year (Seyed Hashtroudi et al., 2022). This phenomenon creates a relatively uniform substratum in the region where fine sediments are at the minimum (Tables 2 and 3). On the other hand, the rocky substratum is the habitat of preference in the case of *Rhyssooplax peregrina* (Thiele), which needs hard surfaces to attach.

 Associates between macrobenthos and sediments have often been mentioned in terms of the range of granulometric variations tolerated by each species (Ellingsen, 2002). Based on the lifestyle, the benthos requires specific sediment characteristics for tube building, burrowing, or feeding (Dutertreet al., 2012). For example, a polychaete such as *Capitella capitata* (Fabricius) often needs a large quantity of fine particles to build its tube and to grow. Fine particles, easily resuspended by water movements, are known to affect the feeding processes of benthic species as well (Wildish, 1977; Snelgrove, 1998). Moreover, in nearshore ecosystems, organic content tends to increase with the fineness of the particles (Gray and Elliot, 2009), thereby enhancing the food supply for many benthic species. On the other hand, the rocky substratum is the habitat of the *Rhyssoplax peregrina*, which has a preference for hard substrates.

The dependence of benthos to a substratum was also reported by Wildish (1977) and Snelgrove (1998). In this study, however, the substratum of the sampling points was relatively uniform, which removes their potential role in the observed overall biodiversity of macrofauna. This result should be interpreted with a consideration that the studied stations are all located on beaches of Chabahar Bay, in which seasonal monsoons are strong enough to mix the sediments throughout the year (Seyed Hashtroudi et al., 2022). This phenomenon creates a relatively uniform substratum in the region where fine sediments are at the minimum (Tables 2 and 3). On the other hand, the other abiotic factors, such as temperature, turbidity, and organic matter may have also showed significant effects on the distribution of benthos studied.
Many aspects of the environmental variations in Chabahar Bay are related to the seasonal monsoon system (Seyed Hashtroudi et al., 2022). Turbidity, for example, increases in monsoon periods. The presence of sediment grains in the water column can disturb the oxygen uptake or feeding behavior of macrofauna and increases death rate of sensitive species. The high levels of organic matter (> 3%) have been attributed to impaired benthic fauna (Aghadadashi et al., 2022), while moderate levels of organic materials are of benefit for the benthos. Therefore, the level of organic materials can be a predictive factor of biodiversity.

Table 1: Multiple regression analysis between species density and non-biological factors at three stations in the Gulf of Oman, Iran.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of squares</th>
<th>df</th>
<th>Mean square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>615.987</td>
<td>6</td>
<td>102.660</td>
<td>2.25</td>
<td>0.030</td>
</tr>
<tr>
<td>Residual</td>
<td>7306.034</td>
<td>71</td>
<td>102.902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7924.996</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Results of grain size analysis in the studied transects for the warm season in the Gulf of Oman, Iran.

<table>
<thead>
<tr>
<th>Transect</th>
<th>Grain size</th>
<th>Mid-littoral</th>
<th>Low-littoral</th>
<th>Sublittoral</th>
<th>Supra-littoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tis</td>
<td>coarse</td>
<td>4.4</td>
<td>0</td>
<td>7.1</td>
<td>57.7</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>11.8</td>
<td>0</td>
<td>12.5</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td>fine</td>
<td>2.8</td>
<td>0</td>
<td>79.40</td>
<td>9.1</td>
</tr>
<tr>
<td>North of Chabahar Bay</td>
<td>coarse</td>
<td>6.2</td>
<td>1.1</td>
<td>0.78</td>
<td>30.4</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>31.7</td>
<td>24.8</td>
<td>11.6</td>
<td>10.6</td>
</tr>
<tr>
<td></td>
<td>fine</td>
<td>5.1</td>
<td>3.1</td>
<td>88.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Konarak</td>
<td>coarse</td>
<td>1.1</td>
<td>0</td>
<td>1</td>
<td>52.5</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>22.6</td>
<td>0</td>
<td>7.3</td>
<td>35.1</td>
</tr>
<tr>
<td></td>
<td>fine</td>
<td>0</td>
<td>0</td>
<td>91.7</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Table 3: Results of grain size analysis in the studied transects for the cold season in the Gulf of Oman, Iran.

<table>
<thead>
<tr>
<th>Transect</th>
<th>Grain size</th>
<th>Mid-littoral</th>
<th>Low-littoral</th>
<th>Sublittoral</th>
<th>Supra-littoral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tis</td>
<td>coarse</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>51.5</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>1.3</td>
<td>0</td>
<td>14.1</td>
<td>38.9</td>
</tr>
<tr>
<td></td>
<td>fine</td>
<td>17.4</td>
<td>0</td>
<td>83.3</td>
<td>10.6</td>
</tr>
<tr>
<td>North of Chabahar Bay</td>
<td>coarse</td>
<td>1.4</td>
<td>0.68</td>
<td>2.1</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>2.3</td>
<td>28.5</td>
<td>8.8</td>
<td>81.7</td>
</tr>
<tr>
<td></td>
<td>fine</td>
<td>41.8</td>
<td>1.5</td>
<td>89.1</td>
<td>9.9</td>
</tr>
<tr>
<td>Konarak</td>
<td>coarse</td>
<td>1.5</td>
<td>0</td>
<td>0.79</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>medium</td>
<td>31.6</td>
<td>0</td>
<td>7.1</td>
<td>87.3</td>
</tr>
<tr>
<td></td>
<td>fine</td>
<td>2.2</td>
<td>0</td>
<td>91.9</td>
<td>6.8</td>
</tr>
</tbody>
</table>

Figure 5: Shannon–Wiener index for the Tis, north of Chabahar Bay, and Konarak stations, Gulf of Oman, Iran.
Conclusions
The present study integrated local ecological surveys in order to identify and rank soft-bottom macrofaunal richness along the intertidal zones of Chabahar Bay. Use of the Shannon–Wiener index made it clear that the biodiversity levels are different between the studied seasons in two of three transects. A significant relationship between species density was also detected. While this study revealed a significant relationship between species diversity and non-biological factors (organic matter, turbidity, and temperature), the assessment methods were also proven to be useful predictors of an environment. The use of sediment analysis to determine species diversity using the Shannon–Wiener index could be considered for use in the establishment of a baseline for coastal management in general.

Acknowledgements
The author is grateful to the anonymous reviewers for reviewing various versions of this manuscript and providing insightful suggestions and corrections.

Conflict of Interest
The author declares that there are no conflicting issues related to this research article.

References

